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Percolation on two- and three-dimensional lattices

P. H. L. Martins and J. A. Plascak*
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In this work we apply a highly efficient Monte Carlo algorithm recently proposed by Newman and Ziff to
treat percolation problems. The site and bond percolations are studied on a number of lattices in two and three
dimensions. Quite good results for the wrapping probabilities, correlation length critical exponent, and critical
concentration are obtained for the square, simple cubic, hexagonal close packed, and hexagonal lattices by
using relatively small systems. We also confirm the universal aspect of the wrapping probabilities regarding
site and bond dilution.
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I. INTRODUCTION

Among the several methods for treating disordered s
tems and geometrical problems, percolation theory is
tainly one of the most important. Due to its similarities wi
transitions that occur in many other systems~not only physi-
cal, but biological, social, etc.!, percolation has been used
studies within a large variety of fields. Forest fires@1#, bio-
logical evolution@2,3#, epidemics@4#, social influence@5#,
and dilute magnetism@6# are only a few examples of th
wide applicability of this theory, as well as percolation~e.g.,
in porous media! itself @7#.

Although easily defined, percolation presents theoret
and computational difficulties. For instance, the percolat
threshold for the site problem on a simple square lattice
not known exactly. Therefore, approximate solutions are n
essary, and much effort has been dedicated in this direc
From the theoretical point of view, one can utilize mean-fie
@8,9# and renormalization group@10–13# techniques, among
others. In particular, computer simulations constitute a po
erful tool in this area, since their application to percolation
simpler than for many other problems in statistical phys
@14#. Typically, one can obtain a valid configuration by sim
ply populating sites~or bonds! in a given lattice. To measur
quantities of interest, such as the percolation threshold or
mean cluster size, it is necessary to identify all clusters in
configuration. For this purpose, many algorithms have b
developed, the best known perhaps being that devised
Hoshen and Kopelman@15#. Other algorithms, like hull gen
eration @16,17#, can also be used, but only to answer so
specific questions. More recently, Newman and Ziff p
posed a new algorithm@18#, which is general and quite effi
cient, both in its computational requirements and in its ac
racy. Although the algorithm can be used to obtain a
observable of the problem, in their papers they have use
to calculate the so-called wrapping probabilities to inve
gate a number of aspects of the problem. For example, u
exact values of the wrapping probabilities, a high-precis
result for the site percolation threshold on the square lat
was obtained@18#.
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Unfortunately, for most lattices, one does not know t
exact wrapping probabilities and, in using them, the probl
must be tackled in a different way. One of the wrappi
probabilities—RL

(1) , which is the probability that a cluste
wraps around one specified axis, but not around the o
ones—is particularly useful. In this case it is not necessar
know its exact value at the critical concentration for the
finite system, since it has a maximum from which the critic
point can be obtained. The method, however, is indeed
pable to properly estimate the other wrapping probabilit
which do not exhibit a maximum~in such cases there is jus
a crossing region close to the critical threshold!. On the other
hand, as we will see below, there are still some probabili
in dimensions higher than two that present, besides the m
mum, a crossing region from where critical behavior is a
achieved.

In this work we compute the percolation threshold and
correlation length exponent, as well as the set of the
known wrapping probabilities using the Newman-Ziff alg
rithm. These quantities are evaluated by employing the us
finite-size scaling as well as a cell-to-cell scheme@19#. After
summarizing the Newman-Ziff approach in the followin
section we describe, in Sec. III, the method that enables u
evaluate such geometrical quantities and we apply it to
and bond percolations on the square, simple cubic, H
~hexagonal close-packed!, and simple hexagonal lattices
Concluding remarks are given in the final section.

II. THE NEWMAN-ZIFF ALGORITHM

To determine the percolation transition, this algorith
uses the wrapping probabilityRL(p), which, for a given site
~or bond! occupationp, is basically the probability that a
cluster wraps around a system with periodic boundary c
ditions on a lattice of linear dimensionL. This wrapping can,
however, be defined in various manners, each with its o
probability. For instance, on two-dimensional lattices o
has:~i! RL

(h) andRL
(v) , the probabilities that a cluster wrap

around the system in the horizontal or vertical direction,
spectively~on a square lattice these quantities are equal!; ~ii !
RL

(e) , the probability that the cluster wraps around the latt
eitherhorizontallyor vertically ~or both!; ~iii ! RL

(b) for wrap-
ping in both horizontaland vertical directions;~iv! RL

(1) for
wrapping aroundone specified direction butnot the other
one. Different lattices can allow for further geometric
©2003 The American Physical Society19-1
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choices forRL(p). For example, on a simple cubic lattic
besidesRL

(1) , we can defineRL
(2) as the probability that there

exists a cluster that wraps the system in two directions,
not around the third one. Analogously toRL

(b) , we haveRL
(3)

for wrapping around the three directions.
In order to evaluate these quantities it is necessary to g

erate many independent realizations of the algorithm, eac
them consisting of the following steps.

~1! Initially, all sites are empty.
~2! Sites are chosen to be occupied at random.
~3! When a new site is added, one must check all

neighbors to verify if the new site forms an isolated clus
~all neighbors empty! or if it joins together two or more
clusters. In the first case, we need to do nothing. In the la
we have to update the cluster listing. Clusters are stored
tree structure, with one site of each cluster considered
root site. All sites in a given cluster, other than the root, ha
a pointer to some other site in the same cluster, such tha
following a succession of such pointers one can ultimat
reach the root. In order to join two clusters we simply ad
pointer from the root of the smaller cluster to the root of t
larger one.

~4! Each time step~3! is repeated, we evaluate the qua
tities of interestQL

n as a function of the numbern of occu-
pied sites.QL

n may be any of the wrapping probabilitiesRL .
Let n8 be the number of occupied sites for which percolat
first occurs in a given realization.QL

n represents the fraction
of realizations in whichn8 is less than or equal ton. Using
all QL

n’s so evaluated, it is possible to calculate the funct
QL(p) for all possible values ofp in the range between 0 an
1 by a convolution with the binomial distribution@18#:

QL~p!5(
n

S N

n D pn~12p!N2nQL
n . ~1!

For the bond percolation problem, we just replace sites
bonds in the above steps.

The evaluation of the statistical errors can be done i
conventional fashion. As discussed in Ref.@18# the standard
deviation of the binomial distribution~1! is given by

sQL(p)5AQL~p!@12QL~p!#

NMCS
, ~2!

where QL(p) in the above equation has been taken as
mean value of the corresponding wrapping probability a
NMCS is the number of Monte Carlo steps per site.

As an illustration, we show in Figs. 1~a! and 1~b! the
wrapping probabilitiesRL

(h) and RL
(1) as a function of the

concentrationp of occupied sites for square lattices of diffe
ent sizes. The exact valuesR`(pc) of these quantities for an
infinite square system were derived by Pinson@20# and Ziff
@21#. In Ref. @18# it has been used these exact values
obtain an estimate for the percolation thresholdpc . For each
system sizeL, one determines thep value yielding a wrap-
ping probability equal to exact critical value. Thisp value
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provides the estimate ofpc
L for that L. In the critical region,

one knows that the estimatespc
L converge to the thresholdpc

according to

pc
L2pc;L2u21/n. ~3!

For square systems, using the known value 4/3 of the ex
nentn andu52, as obtained in Ref.@18#, we havepc

L2pc

;L211/4. By a finite-size scaling, Newman and Ziff obtaine
pc50.592 746 21(13) for the infinite system. This procedu
is more complicated in higher dimensions. Since neitheu
nor n are known, one has to vary the scaling exponent
obtain a straight line. In Ref.@18#, it was found that the
estimates of the percolation threshold for a simple cubic
tice scale asL22. Thus, it seems to be not so easy to det
mine n andu separately by this method.

One has to note@Fig. 1~b!# that RL
(1) is different from the

other probabilities, as it exhibits a maximum. In this case,pc
L

can be estimated from the position of this maximum.RL
(1) is

then of particular utility in systems, for which the exact va
ues are not known. We will see, moreover, that all the ot
wrapping probabilities can also be used to estimate the
colation threshold, as well as the correlation length criti
exponent, on any lattice. There are, in addition, some qu
tities like RL

(2) in three dimensions which exhibit both
maximum and a crossing region.

III. APPROACH AND RESULTS

We have applied the Newman-Ziff algorithm to site pe
colation on the two-dimensional~2D! square, the three

FIG. 1. Wrapping probabilitiesRL as a function of occupation
probability for site percolation on: square lattices~a! RL

(h) and ~b!
RL

(1) ; and hexagonal lattices~c! RL
(x) and ~d! RL

(1) . For the square
lattice the data have been obtained by taking 4.03105 MCS and
lattice sizesL532, 48, 64, 96, 128. For the hexagonal lattice t
data have been obtained by taking 5.03105 MCS and lattice sizes
L510, 12, 16, 20, 24. In all figures the error bars were omitted
a better visualization. Vertical dashed lines represent the lowest
the greatest values ofp we have utilized for evaluating wrappin
probabilities.
9-2
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dimensional simple hexagonal and simple cubic~3D! lat-
tices, and to bond percolation on square~2D!, simple cubic,
and HCP~hexagonal close-packed! lattices. Table I gives the
system and sample sizes used in our study.

Before discussing the results, we analyze the standard
viation of some particular quantities. Figure 2 shows
relative error ofRL

(v) for the square lattice andRL
(x) for the

hexagonal lattice as a function ofL, at the critical concentra
tion. Apart from a strong dependence with smallL, we
clearly see that for larger lattice sizes the relative erro
almost independent ofL, as predicted by Eq.~2! and previ-
ously stressed by Newman and Ziff@18#, even for the three-
dimensional hexagonal lattice. Similar behavior is found
other wrapping probabilities, other three-dimensional l
tices, as well as for the bond problem in different latti
structures.

Let us now discuss the evaluation of the critical expone
the percolation threshold, and the wrapping probabilities
order to get an idea of the performance of the present
proach, we will first apply it to the problem in two dimen

TABLE I. Lattice sizes and run lengths~MCS! used in this
work. The smallest and largest figures correspond to the total n
ber of sites or bonds. In parentheses we have the correspon
lattice sizeL.

Lattice Smallest Largest MCS~units of 105)

Site percolation
Square 1 024~32! 16 384~128! 4.0
Hexagonal 4 096~16! 21 952~28! 1.0–10.0
Cubic 4 096~16! 21 952~28! 1.0–2.0

Bond percolation
Square 2 048~32! 32 768~128! 2.0–4.0
HCP 768~4! 20 736~12! 5.0
Cubic 12 288~16! 52 728~26! 0.1–0.5

FIG. 2. ~a! Relative error ofRL
(v) , whereDRL

(v)5sR
L
v for site

percolation on the square lattice.~b! Relative error ofRL
(x) , where

DRL
(x)5sR

L
x for site percolation on the hexagonal lattice.
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sions where the exact~or more accurate! results are avail-
able. From Fig. 1~a! one sees that the derivative ofRL

(h) at the
critical concentration increases as the lattice size increa
In fact, one expects that the maximum derivative of a
wrapping probability not exhibiting a maximum scales
@22#

S dRL

dp D
max

;L1/n. ~4!

Thus, the critical exponentn can be estimated without an
consideration of the critical concentrationpc by taking the
scaling behavior of the derivatives of the thermodynam
quantitiesRL . They can be straightforwardly computed fro
relation ~1!

dQL

dp
5(

n
F S N

n D npn21~12p!N2n2S N

n D ~N2n!pn

3~12p!N2n21GQL
n . ~5!

In Fig. 3 we plot, on log10 scales, the maximum value of th
derivative ofRL

(v) as a function of system size, for site pe
colation on the square lattice~the hexagonal lattice will be
discussed later!; a linear fit yieldsn (v)51.334(4). Other
quantities give independent estimates of the exponent~the
corresponding data are too close to those ofRL

(v) to be dis-
tinguished on the scale of Fig. 3!. We find n (h)51.331(2);
n (b)51.339(4); andn (e)51.327(1). Combining these four
estimates we obtainn51.333(5), in very good agreemen
with the exact result 4/3.

Figure 4 illustrates the approach for evaluating the criti
concentration, as well as the wrapping probabilities atpc ,
applied again to the site percolation problem on the squ
lattice, through a cell-to-cell estimate. For a fixed probabil
occupationp, we compute the specified wrapping probabili

-
ing

FIG. 3. Maximum derivative of wrapping probabilities (RL
(v) for

site percolation on the square lattice andRL
(x) for site percolation on

the hexagonal lattice! as a function of system size. Error bars a
smaller than the symbol sizes. Linear regression of the data g
n51.334(4) for the square lattice andn50.866(1) for the hexago-
nal lattice.
9-3
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as a function of the lattice size. Figure 4 showsRL
(v) as a

function of L. For p,pc , RL
(v) decreases with increasin

lattice size. Forp.pc , it increases. Exactly atpc one ex-
pects the wrapping probability to be independent of sys
size. Thus, by varyingp in the critical region and searchin
for a constantRL

(v) we obtain an estimate forpc . The vertical
dashed lines in Fig. 1~a! represent the limits on thep values
studied. From the data forRL

(v) , in Fig. 4, we have thenpc

50.5928(2) andRL
(v)50.523(4). Combining this estimate

with those coming from the other quantities we obtain
values listed in Table II. The results are quite close to
exact or expected ones, despite the small systems~sizes up to
1283128) and short runs~see Table I!. Table II also gives
the results obtained from the present procedure to the b
percolation problem~which is easily implemented in the a
gorithm! with an excellent estimate of the known critic
concentration. Moreover, the wrapping probabilities, with
the error bars, are the same for site and bond problems,
firming the universal character of these quantities.

Having demonstrated the good performance of
method in cases where exact results are available, we stu
some three-dimensional lattices where data are not so u

FIG. 4. Wrapping probabilityRL
(v) as a function of the lattice

sizeL for site percolation on square lattices. Different lines cor
spond to different concentrationsp. The best constant horizonta
line is represented by full triangles yieldingpc50.5928(2) and
RL

(v)50.523(4). Error bars are smaller than the symbol sizes.
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uitous in the literature. In particular, we treat the simple c
bic, simple hexagonal, and the HCP~hexagonal close-
packed! lattices. To our knowledge, there are no resu
available for the wrapping probabilities on such geometr
as well as no indication of their universal aspect regard
site and bond dilution.

As an example, we show in Figs. 1~c! and 1~d! the wrap-
ping probabilitiesRL

(x) andRL
(1) as a function ofp for various

lattice sizes, for site percolation on the simple hexago
lattice. The corresponding scaling behavior of the derivat
of RL

(x) is depicted in Fig. 3; an estimate for the critical e
ponentn may be extracted from these data. In Fig. 5 w
show the estimate forpc as well as the value of the wrappin
probabilityRL

(x) . The combined results are listed in Table I
together with the values for the simple cubic lattice and th
obtained for the bond percolation on the HCP and sim
cubic lattices. One can clearly see that the wrapping pr
abilities are distinct for different geometries, as is the critic
concentration. Not only are ourpc estimate comparable to
the values obtained previously, but the critical expone
found here are close to the expected result for this univer
ity class, namely,n50.83(5) from series@23#, n50.88(1)

-
FIG. 5. Wrapping probabilityRL

(x) as a function of the lattice
size L for site percolation on hexagonal lattices. Different lin
correspond to different concentrationsp. The best horizontal line is
represented by full triangles, yieldingpc50.2624(4) andRL

(x)

50.429(5). Error bars are smaller than the symbol sizes.
he last
se from
TABLE II. Results for site and bond percolation on the square lattice. Errors in parentheses affect t
digits. For each case, the first row shows the results described in Sec. III and for the second row tho
the modified approach briefly discussed in Sec. IV~in the latter method the exact value for the exponentn)
is used.

Two dimensions
Lattice R(h) R(v) R(e) R(b) n pc ~this work! pc

Site 0.517~4! 0.523~4! 0.692~3! 0.347~4! 1.333~5! 0.592 7~1! 0.592 7a

0.521~9! 0.524~6! 0.695~7! 0.353~5! 0.592 9~3! 0.592 7a

Bond 0.521~2! 0.518~3! 0.691~3! 0.351~2! 1.331~3! 0.499 95~15! 1/2 b

0.517~11! 0.519~13! 0.684~16! 0.348~6! 0.499 8~4! 1/2 b

Exacta 0.5211 0.5211 0.6905 0.3516 4/3

aReference@18#.
bReference@24#.
9-4
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TABLE III. Results for site~s! percolation on hexagonal and simple cubic lattices and for bond~b! percolation on simple cubic and HC
lattices. Errors in parenthesis affect the last digits.

Three dimensions
Lattice R(x) R(y) R(z) R(e) R(3) n pc ~this work! pc

Hexagonal~s! 0.429~5! 0.332~5! 0.183~4! 0.467~6! 0.120~3! 0.867~14! 0.262 5~2! 0.262 3~2! a

Simple cubic~s! 0.254~5! 0.255~5! 0.254~5! 0.456~7! 0.078~3! 0.877~12! 0.311 5~3! 0.311 6063~9! b

Simple cubic~b! 0.265~6! 0.266~6! 0.265~6! 0.471~8! 0.084~4! 0.868~11! 0.249 0~2! 0.248 8126~5! c

HCP~b! 0.331~6! 0.443~6! 0.093~3! 0.561~7! 0.052~3! 0.848~33! 0.120 3~2! 0.119 9~2! a

aReference@25#.
bReference@26#.
cReference@28#.
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@7#, n50.8765(16)@26# andn50.893(40)@27# from Monte
Carlo simulations.

The data of Table III are, up to our knowledge, quite n
for these three-dimensional lattices. A byproduct of t
present results concerns the universality ofRL(pc) at the
percolation threshold. One can clearly see that for site
bond percolation the wrapping probabilities of the simp
cubic lattice are, within the error bars, the same~as well as
for the problem in two dimensions depicted in Table II!. This
is in quite good agreement with the expected universal as
previously obtained for the spanning probability in gene
dimensions and with both free and periodic boundary con
tions @29#.

Another interesting aspect of the three-dimensional
tices is the behavior of the quantityRL

(2)(p) giving the prob-
ability of wrapping around two directions and not around t
third direction. Figure 6 shows such behavior for the sim
cubic site diluted problem. In this case one can obtain
estimate of the critical concentration not only from the po
tion of its maximum but also from the crossings atpc . It is
noted, however, that a more accurate value is achieved f
the analysis of the crossings~as done in Fig. 5! than from the
location of its maximum. The same behavior occurs for ot
lattice structures.

FIG. 6. Wrapping probabilityRL
(2)(p) as a function ofp for the

site percolation on the simple cubic lattice. From the position of
peaks one estimatespc50.3171(3) and from the procedure of th
crossing region one getspc50.3116(3).
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IV. CONCLUDING REMARKS

We have seen that the results obtained using the pre
method are in good agreement with the exact~when avail-
able! or expected ones. It is important to note that this p
cedure has been implemented using relatively small syst
and short Monte Carlo runs; better results could be achie
in larger-scale simulations. In addition, from the comput
wrapping probabilities atpc for the square and simple cubi
lattices one can also confirm their universal aspect regard
site and bond dilution. The same should hold, of course,
the other lattice geometries.

A slightly modified version of the present procedure, n
using the cell-to-cell estimate, can also be applied to pr
lems on two-dimensional lattices. Instead of tuningp, one
can tune one of theRL in the critical region. For a given
quantity RL ~say, for exampleRL

(h)) we fix it at a specified
value R* on the vicinity of the critical point, and procee
analogously to Newman and Ziff’s original approach. O
serve thatR* is in this case a first estimate forR`(pc). One
can then compute, for eachL, the intercept between the func
tion RL(p), previously evaluated, with the fixedR* . Each of
these intercepts gives an estimate forpc

L , which is expected,
for two-dimensional systems, to scale asL2f with f
511/4. Therefore, plottingpc

L vs L211/4 for different values
of R* , we can estimate the trueR` as well as the percolation
threshold by looking for the value ofR* that yields the best
straight line. Table II reports the critical values so obtain
for the two-dimensional lattice. The results are quite go
and comparable to those obtained in the preceding sec
for both the wrapping probabilities and the critical conce
tration. However, the errors are in general considera
larger. In three dimensions this procedure can be imp
mented only if we know the exponentf beforehand.
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